Decentralized Path Planning for Multiple Agents in Complex Environments using Rapidly-exploring Random Trees
نویسندگان
چکیده
This thesis presents a novel approach to address the challenge of planning paths for real-world multi-agent systems operating in complex environments. The technique developed, the Decentralized Multi-Agent Rapidly-exploring Random Tree (DMARRT) algorithm, is an extension of the CL-RRT algorithm to the multi-agent case, retaining its ability to plan quickly even with complex constraints. Moreover, a merit-based token passing coordination strategy is also presented as a core component of the DMA-RRT algorithm. This coordination strategy makes use of the tree of feasible trajectories grown in the CL-RRT algorithm to dynamically update the order in which agents plan. This reordering is based on a measure of each agent’s incentive to replan and allows agents with a greater incentive to plan sooner, thus reducing the global cost and improving the team’s overall performance. An extended version of the algorithm, Cooperative DMA-RRT, is also presented to introduce cooperation between agents during the path selection process. The paths generated are proven to satisfy inter-agent constraints, such as collision avoidance, and a set of simulation and experimental results verify the algorithm’s performance. A small scale rover is also presented as part of a practical test platform for the DMA-RRT algorithm. Thesis Supervisor: Jonathan P. How Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
منابع مشابه
Information-rich Path Planning under General Constraints using Rapidly-exploring Random Trees
This thesis introduces the Information-rich Rapidly-exploring Random Tree (IRRT), an extension of the RRT algorithm that embeds information collection as predicted using Fisher information matrices. The primary contribution of this trajectory generation algorithm is target-based information maximization in general (possibly heavily constrained) environments, with complex vehicle dynamic constra...
متن کاملIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments
The sampling based motion planning algorithm known as Rapidly-exploring Random Trees (RRT) has gained the attention of many researchers due to their computational efficiency and effectiveness. Recently, a variant of RRT called RRT* has been proposed that ensures asymptotic optimality. Subsequently its bidirectional version has also been introduced in the literature known as Bidirectional-RRT* (...
متن کاملInformation-rich Path Planning with General Constraints using Rapidly-exploring Random Trees
This paper introduces the Information-rich Rapidly-exploring Random Tree (IRRT), an extension of the RRT algorithm that embeds information collection as predicted using Fisher Information Matrices. The primary contribution of this algorithm is target-based information maximization in general (possibly heavily constrained) environments, with complex vehicle dynamic constraints and sensor limitat...
متن کاملRobotic Path Planning using Rapidly exploring Random Trees
Rapidly exploring Random Tree (RRT) path planning methods provide feasible paths between a start and goal point in configuration spaces containing obstacles, sacrificing optimality (eg. Shortest path) for speed. The raw resultant paths are generally jagged and the cost of extending the tree can increase steeply as the number of existing branches grow. This paper provides details of a speed-up m...
متن کاملRSRT: Rapidly exploring sorted random tree - online adapting rrt to reduce computational solving time while motion planning in wide configuration spaces
We present a new algorithm, named RSRT, for Rapidly-exploring Random Trees (RRT) based on inherent relations analysis between RRT components. RRT algorithms are designed to consider interactions between these inherent components. We explain properties of known variations and we present some future once which are required to deal with dynamic strategies. We present experimental results for a wid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010